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A numerical technique is developed in the present investigation to generate grids by the use 
of the Poisson equations. Orthogonal grids are obtained along all of the two boundaries n = 0 
and rl = rlmax The “stand-off” grid spacing between 5 =0 and 5 = A< and between 
t = L,, - A5 and 5 = L,, can be controlled by employing a proper grid point distribution on 
the boundaries n = 0 and n = nmar. Thanks to the orthogonal boundary grids, the present 
numerical technique is applicable to complex geometry by patching grids without slope 
discontinuity across the interface of the patches. This technique also allows the Poisson 
equations to generate coordinates for O-type grid system and for periodic turbine cascades. 
In the course of grid generation, the magnitudes of the required control functions might be 
very large in a region where clustering grids are needed. To guarantee a good numerical 
stability in spite of the values of the control functions, the weighting function scheme along 
with the SIS solver is employed. Through the examples illustrated in the present study, the 
negative Jacobian reported by previous investigators is shown not to arise from the use of the 
Poisson equations. It, indeed, comes from the truncation error of the central difference scheme 
used by them. 0 1991 Academic Press, Inc. 

Solving a partial differential equation defined on an arbitrarily shaped domain is 
encountered in many physical problems such as fluid mechanics, heat transfer, 
structures, electromagnetics, and all other areas involving field solutions. To obtain 
an accurate solution, the irregular physical domain is commonly transformed into 
a rectangular one by employing a numerical grid generation technique. One of the 
highly developed techniques for generating a boundary-fitted coordinate system is 
to let the curvilinear coordinates (r, q) be the solution of a system of elliptic 
differential equations in the physical plane. Although systems of parabolic or hyper- 
bolic differential equations can also be used, only the system of elliptic differential 
equations allows specified boundary grid distribution along all of the boundaries. 

In 1962, Crowley [l] suggested the solution of the Laplace equations V*< = 0 
and V*q = 0 be used as the curvilinear coordinates. However, the earliest successful 
development of the Laplace grid generation method was formally reported by 
Winslow [2], since the system had to be reformulated by an interchange of 
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dependent and independent variables. The next major step in the development of 
elliptic methods was given by Thompson et al. [3]. In their study, Thompson et al. 
[3] extended the Laplace method to problems having multiply-connected domain. 
In addition, they proposed the Poisson method by adding a pair of control 
functions to the right-hand sides of the Laplace equations, i.e., V2t = P and 
V2q = Q. The grid distribution thus can be improved by the assigned values of P 
and Q. The effect of the control functions on the curvilinear coordinates system has 
been extensively studied by Thompson et al. [4]. Generally speaking, for a 
boundary with a constant q-value, the control function P changes the intersecting 
angles of the constant 5 curves at that boundary while Q alters the spacing of the 
constant u curves. Based on such a finding, Thompson et al. [S] developed the 
TOMCAT code by employing control functions of exponential form. Another form 
for the control functions was proposed by Middlecoff and Thomas [6]. 

The major difficulty in the use of Poisson grid generation method is the choice 
of the control functions. Hodge et al. [7] simplified the exponential form of the 
control functions proposed by Thompson et al. [S] and proposed a procedure for 
automating the choice of the amplitudes of the exponential control functions. In the 
development of their GRAPE code, Steger and Sorenson [S-lo] back-solved the 
values of the control functions from the governing equations for the two boundaries 
q = 0 and yt = urnax. The control functions inside the domain then were interpolated 
with exponential functions as suggested by Thompson et al. [S]. Such a procedure 
gives the advantage that the desired intersecting angles and the “stand-off’ spacing 
at q = 0 and q = I],,, can be specified. 

It should be noted here that, although both grid size and grid skewness can be 
controlled at the boundaries of q = 0 and ye = qmaxr some disadvantages arise in the 
use of the GRAPE code [9, lo]. First, the control functions inside the domain are 
defined by the sum of two branches of exponential functions with one arising from 
q = 0 and the other from q = vmaX. For convenience, the former is called branch A 
and the latter branch B. For cases having small qrnax values, branch A does not 
vanish at q = qmax such that grid control at the boundary of q = qmax becomes very 
difficult. Similarly, the control functions at q = 0 will pose an interference from the 
branch B. As a result, the boundary grids cannot be properly controlled unless the 
value of qmax is siffuciently large. For instance, when applied to a periodic turbine 
cascade, the aspect ratio (pitch to blade length) must be as large as 5 (see Figs. 9 
of [9]) in the use of the GRAPE code. However, the aspect ratio in turbine cascade 
is 0.7, in general. Second, grids cannot be controlled at the other pair of boundaries 
5 = 0 and g = t,,,. The slope continuity thus is not guaranteed at the branch cut 
in generating O-type grids. Finally, the numerical scheme employed in the GRAPE 
code poses serious numerical difficulties in solving the Poisson grid generation 
equations when the control functions have large magnitudes. This point has been 
remarked by Steger and Sorenson [8] and Sorenson [9]. 

The purpose of the present investigation is to propose a numerical technique to 
generate two-dimensional grids with grid control along all of the boundaries. The 
control functions inside the domain are interpolated from the desired boundary 
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FIG. 3. Grid system generated by the present technique. 

shows the resulting grid system. As expected, the weighting function scheme does 
not produce grids with negative Jacobian and thus does not reproduce the grids 
shown in Fig. 1. This seems to substantiate the point that the negative Jacobian as 
can be seen from Fig. 1 comes from the truncation error of the central difference 
scheme. To examine the performance of the present grid generation technique, 
Coleman’s problem [16] is solved by the algorithm presented in the previous 
section. The resulting grid system is shown in Fig. 3. From Fig. 3, one sees that the 
grid system has a smoothly varying grid size over the entire domain with 
orthogonal grids at the four boundaries. No negative Jacobian is found even 
though the cavity in Fig. 3 is deeper than that in Fig. 1. 

Large control functions occur also in an adaptive grid system due to the need of 
clustering grids at some particular locations. In testing the performance of their 
adaptive method, Matsuno and Dwyer [15] employed a physical quantity 
simulated by f(x; a) that has a sharp but continuous increase at x = 0.5. The varia- 
tion of the function f(x; a) in a narrow region containing the point x=0.5 is 
specified by the the parameter a. As a assumes the value of infinity, the function 
f(x; co) becomes a unit step function at x = 0.5. For a given value of a, Matsuno 
and Dwyer [15] generated a grid system by using their adaptive method for the 
particular f-function. Both first and second derivatives of the function (i.e., f, and 
fXX) were then evaluated numerically from the exact value of thef-function defined 
at the grid points. The numerical results off, and f,, can be expected to have 
poor accuracies if an improper grid system has been provided by the adaptive 
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particularly true when the heat transfer coefficient in heat transfer problems (or 
friction factor in fluid mechanics problems) is evaluated. Hence, orthogonal grids 
are usually desired along the boundaries. Based on such a requirement, the values 
of the control functions P(t, 0) and Q(<, 0) at the boundary q = 0 are back-solved 
from Eqs. (2) and (3) as 

A = ctxrr + yx,,,, 

B=clyt;5+YY,q, 

where the /I-value has been assigned zero. In Eqs. (5), the values of x5, yg, xeS, and 
yri; can be evaluated from x(&O) and ~(5, 0), whereas the values of x,, and yrl are 
determined by 

x1= -s,y,r(x;+y;)-“2 

yv = $x&x; + y;, ~ 1’2 (6) 

s,, = As(S)/& 

where As(<) is the desired “stand-off’ spacing between the two curves q = 0 and 
q = A?. The values of x,,,, and y,, will be guessed or estimated from the previous 
solution of x(& q) and y(<, q) by the second-order fintie difference [9] 

x&, 0) = (-3.5x, +4X, - 0.5x3)/Atj2 - 3(x,),/Aq 

Y,,(L O)= (-3.5~~ +~Y~-O.~Y~)/AV~- 3(y,),lA% 
(7) 

where the subscripts 1, 2, and 3 stand for, respectively, the positions q = 0, Aq, and 
261. The values of the control functions P([, r],,,) and Q(5, qm,,) at the boundary 
rl = rlmax can be determined in a similar manner. 

Once the control functions at the two boundaries 9 =0 and q = yl,,, are 
available, the distribution of the control functions inside the computational domain 
is interpolated by using power-law functions as 

where the powers a, b, c, and d are used to specify the variations of the control 
functions inside the domain. The values of a, b, c, and d will be assigned by the user 
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in the range of 2 to 5, in general. However, they do not necessarily have the same 
values, As mentioned earlier, the present control functions (8) and (9) reduce, 
respectively, to P(<, 0) and Q(<, 0) as q = 0 and to P(& v,,~) and Q(& q,,,) 
as v=YI~~~. Thus, unlike the exponential functions employed by Steger and 
Sorenson [S-lo], the present power-law functions (8) and (9) control both grid 
size and grid skewness at q = 0 and q = yl,,, very well, despite the decaying powers 
and the qmax value. 

It is noted that the control functions along the boundary 5 = 0, i.e., P(0, q) and 
Q(0, q), have been defined by Eqs. (8) and (9). Thus, no orthogonal grids are 
guaranteed at the boundary 5 = 0, if fixed grid point distribution is specified there. 
In the present investigation, the grid points are allowed to move along the curve of 
r = 0 until orthogonal grids are obtained. To achieve this, the slope of the curve 
5 = 0 is expressed by 

e = Y,Ix, = --Q/Y~. (10) 

For convenience of computation, the boundary 5 = 0 is divided into sections that 
have either le( < 1 or lel> 1. The boundary conditions at [ = 0 thus can be defined 
by 

xc= -eys, Y = Y*(t) if lel<l 

x = x*(t), yt = -x& if lel > 1, 
(11) 

where the curve of 5 = 0 is represented by x*(t) and y*(t), 0 < t < 1, with 
x*(O)=-@, Oh y*(O)=y(O,O), x*(1)=40, Q,,,,), and y*(l)=y(O, VI,,,). For the 
sections having lel < 1, the values of t and yE; are evaluated, respectively, from 
x(0, q) and ~(5, q) obtained in the previous iteration. A similar procedure can be 
applied on the sections of lel > 1. 

The boundary conditions (11) can be greatly simplified when 5 = 0 is a straight 
line (e = const). For an inclined straight line, the boundary conditions become 

xc = -eyt, y=yo+e(x-xo) if le( < 1 

x=x,+b-yak Y, = -de if lel > 1, 
(12) 

where x,, = x(0,0) and y, = ~(0, 0). In generating O-type grids, it is convenient to 
define a branch cut in the horizontal position (e = 0). The boundary conditions thus 
reduce to 

xc=0 and Y=Yo- (13) 

For the case of a vertical boundary line (lel = co), as encountered in many C-type 
grids, the boundary conditions are 

x=x0 and y,=o. (14) 

581/96/2-15 
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The boundary conditions for 4 = 5,,, can be defined similarly. It should be noted 
that, although the spacings between 5 = 0 and r = dt and between 4 = c,,, - d5 
and 5 = L,, are not specified in the present method, they can be controlled by the 
grid distributions at the boundaries q= 0 and q = I],,, . 

In this section, a mesh with orthogonal boundary grids has been emphasized. 
However, with a minor modification, the present technique is equally applicable to 
cases that require a particular grid skewness on the boundaries. This can be easily 
accomplished by employing the variables 

A = axss - 2j?xg,, + yx,, 

B = a.k + VY~, + YY,, 
x4 = sa(xt cos 8 - y, sin 0)(x: + y:)) l’* 

y, = s4( y5 cos 0 + xt sin 0)(x: + ys) - ‘I*, 

(15) 

(16) 

instead of their counterparts in Eqs. (5) and (6), where 8 is the desired intersection 
angle between the curves of q = 0 and r = const. Similarly, a desired grid skewness 
can be imposed on the boundaries 5 = 0 and <,,, by using a Neumann boundary 
condition. It is noted that Eqs. (16) are derived from 

V( .vq = IV51 IVql cos(n - 0). (17) 

This same geometric property, which is presented in Refs. [8, 91, is incorrect. 

NUMERICAL SOLUTION METHODS 

Equations (2) and (3), the boundary conditions (1 1 ), and the given functions 
x(<, 0), ~(5, 0), x( 5, q,,,), and y(& q,,,) constitute a system of elliptic differential 
equations in the rectangular region 0 6 < < <,,, and 0 d q < urnax. To obtain an 
accurate result with a good numerical stability in spite of the values of J*P/a and 
J*Q/y, the weighting function scheme [ 111 is employed to discretize Eqs. (2) and 
(3). After applying the weighting function scheme [ 111 to Eq. (2) on a uniform grid 
system LI{ = LIP = 1, one obtains 

OSWxi-l,j-1 +awxi-1.j +aNWxipl,j+l 

+aSxi,j-l +aPxi,j+aNxi,j+l 

+“SExi+I,j-~ +“Exi+~,j+uNExi+~,j+~=O 

aw =awf(-zl), aE = awf(zl) 

G=Ywf(--2)9 uN = Ywf(z2) 

csw = - vwf* (Zl) wf* (Z2) 

(18) 

(19) 
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aNE = aSW y aNW= -as,, (ISE = (INW 

ap= -aw -aE-a,-aa, 

Z, = J’P/ci, 22 = J2Qh 
wr(Z) = Z/( 1 -e-=), w;(Z) = Z/(eZ- epZ), 

(20) 

where the subscripts i, j denote a quantity at the point (ti, qj) with ?ji and yli being 
ti = i- 1 and qj = j- 1. Note that the cross derivative term x5,, in Eq. (2) has been 
approximated by 

x~~=(xi-l,j-l+xi+l,j+l-xi~l,j+l-xi+l,j-l)w/*(zl) w/*(z*)P (21) 

based on an interpolation theory described in Appendix A. A similar algebraic 
equation can be obtained for Eq. (3). 

In Eqs. (19), all of the variable quantities, a, 8, y, J, P, Q are evaluated at the 
location (ti, qj). To conserve the CPU time, the weighting functions wr(Z) and 
w,?(Z) are evaluated, respectively, from the approximations 

W/(Z) = [O, (1 - 0.1 IZI)‘] + [O, Z] (22) 

w?(Z) = (2 + 0.3332Z2 + 0.0172Z4))‘, (23) 

where [a, b] stands for the greater of a and b. The accuracy of the approximation 
(22) for the weighting function i-v/(Z) has been discussed by Lee et al. [13]. The 
exact value of the weighting function w?(Z) along with its approximation (23) 
is presented in Table I for comparison. From Table I, it can be seen that the 
weighting function w?(Z) reaches it maximum value w/*(O) =0.5 as Z = 0 and 
becomes zero when IZI = co. In conventional studies, the central difference scheme 
is used to formulate the cross derivatives xgtl and y,,. This implies that w/*(Z) is 
treated as a constant function having the value 0.5. Therefore, the contribution of 
the cross derivative terms are overestimated in conventional studies. 

In the present investigation, the system of algebraic equations is solved by using 
the strongly-implicit solver (SIS solver) proposed by Lee [12]. Due to its strong 
implicitness, the SIS solver allows a poor initial guess for the solution such that it 
shows good performance in solving the algebraic equations (18). For convenience, 
the algorithm of the present grid generation technique is summarized as follows: 

1. Input the grid point distribution x(&O), ~(5, 0), x(& q,,,), ~(5, qmaX) and 
the desired “stand-off” spacing As(<) at ye = 0 and q = v],,,. 

2. Determine the values of xg, y,, xcc, and y,=< along the boundaries q = 0 
and rl=vmax by using the cubic spline technique [14]. 

3. Assign an initial guess for the solution x(& q) and ~(5, q) simply by using 
a linear interpolation based on the boundary values defined at 7 = 0 and q = qrnax. 

4. Evaluate xc, y,, x,,, and y, from the guessed x and y by the use of the 
cubic spline technique for the entire computational domain. 



458 HSU AND LEE 

TABLE I 

Value of the Weighting Function w?(Z) 

Z Exact function” Approximationh 

- 20.0 O.OOOOO o.ooo35 
- 10.0 0.00045 0.00482 

- 5.0 0.03369 0.04744 
-2.0 0.21512 0.27716 
- 1.0 0.42546 0.42546 
-0.8 0.45040 0.45039 
-0.6 0.47121 0.47121 
-0.5 0.47976 0.47976 
-0.4 0.48691 0.4869 1 
-0.2 0.49668 0.49668 
-0.1 0.49917 0.49917 

0.0 0.50000 0.50000 
0.1 0.49917 0.49917 
0.2 0.49668 0.49668 
0.4 0.48691 0.48691 
0.5 0.47916 0.47976 
0.6 0.47121 0.47121 
0.8 0.45040 0.45039 
1.0 0.42546 0.42546 
2.0 0.27572 0.27716 
5.0 0.03369 0.04744 

10.0 0.00045 0.00482 
20.0 O.OOOOO 0.00035 

a Exact function: w,(Z) = Z/(eZ - c~). 
b Approximation: w:(Z) = (2 + 0.3332Z2 + 0.01722“-‘. 

5. Estimate xVV and y,, from Eqs. (7) for the boundaries q = 0 and q = rmax. 

6. Evaluate the P(5,0), Q(5,0), P(t, rlma,), and Q(5, s,,,) values from 
Eqs. (5), and then determine P(<, q) and Q(& q) from Eqs. (8) and (9). 

7. Perform one SIS iteration on Eqs. (18)-(20) to yield x( 5, q) and ~(5, q). If 
the solution from the previous iteration is still very poor, performing two or more 
SIS iterations with a SOR value of 1.0 to 1.3 could help convergence significantly. 

8. If the renewed x and y values are consistent with the previous values 
within a prescribed tolerance then stop. Otherwise, modify the solution x and y 
with a SOR factor and return to step 4. The optimum SOR value needed by the SIS 
solver [ 121 for the present grid generation technique is in the range of 0.1 to 0.3. 

PERFORMANCE OF THE NEW TECHNIQUE 

In conventional grid generation procedures, the central difference scheme is 
employed to discretize the governing equations (2) and (3). However, numerical 
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instability’ could arise in the use of a central difference scheme when J*P/a and 
J’Q/y have large absolute values, as reported by Steger and Sorenson [8,9] and 
Matsuno and Dwyer [15]. In a workshop sponsored by NASA, Coleman [16] 
proposed a grid generation technique that generates orthogonal grids. However, his 
method produced grids with negative Jacobian for a square region with a sine- 
shaped cavity on the top. For convenience, this particular grid system is presented 
in Fig. 1. With the ~(5, q) and ~(5, q) values shown in Fig. 1, Coleman back-solved 
the control functions P(& q) and Q(& q) from Eqs. (2) and (3). Not surprisingly, 
the same grid system (Fig. 1) will be regenerated if Eqs. (2) and (3) are solved by 
using this set of control functions. Based on this, Coleman concluded that the 
Poisson system could produce a mesh with crossing lines (negative Jacobian). 
Recently, this same conclusion was once again drawn by Matsuno and Dwyer [ 151 
in a study on adaptive grids. A similar finding was also remarked by Thompson et 
al. [ 171 in the section of Poisson system that states “The extremum principles may 
be weakened or lost completely with such a system.” However, it must be pointed 
out here that the Poission equations (1) indeed are heat conduction problems with 
heat generation P and Q, if the dependent variables < and q are regarded as tem- 
peratures. Thus, no crossing point exists between two isotherms (7 = c1 and r] = c2) 
despite the values of the heat generation P and Q. The conclusion drawn by 
Matsuno and Dwyer [15], Coleman [16], and Thompson et al. [17] seems to 
violate this natural law. 

In the development of the weighting function scheme, Lee [ 111 examined the 

i I I i i i iitl 

FIG. 1. Orthogonal grid system generated by Coleman’s method [16]. 
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Burgers’ equation without the heat generation term. One of the two boundary tem- 
peratures was assigned zero while the other was maintained at unity. For such a 
problem, the temperature distribution is expected to be in the range of zero to unity 
due to the extremum principle [17]. However, the central difference scheme was 
found to produce negative temperature when the magnitude of the Z-parameter is 
larger than 2. This numerical instability has been proved to arise from the trunca- 
tion error of the central difference scheme (see page 5 of [ 131). The grid generation 
equations (2) and (3), in fact, are heat convection equations in the computational 
coordinates (t, q) with the control functions being a convective term. Hence, the 
central difference scheme could produce grids that violate the extremum principle 
[17] if the Z-parameters (Z, = (J2P/cr) At and Z, = (J2Q/y) ,4~) have a magnitude 
of larger than 2. Such a restriction (IZI < 2) in the use of the central difference 
scheme was also noted by Matsuno and Dwyer [lS]. Fortunately, the weighting 
function scheme [ 11, 131 has been successfully developed from a locally analytical 
solution. This particular scheme produces an exact solution for any homogeneous 
ordinary differential equation with constant coefficients. It thus possesses no trunca- 
tion error, although other modes of errors could arise when the coefficients are not 
constant or when it is applied on a multidimensional problem. The weighting 
function scheme gives positive weighting factors and thus always satisfies the 
physical law. 

Now, let the weighting function scheme (18)-(20) be applied to Coleman’s 
problem [ 161 by using the same set of control functions obtained by him. Figure 2 

H’I;i i i 

11 11 11 11 11 

FIG. 2. Grids produced by weighting function scheme based on the control functions obtained from 
Fig. 1. 
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tiiii 
FIG. 3. Grid system generated by the present technique. 

shows the resulting grid system. As expected, the weighting function scheme does 
not produce grids with negative Jacobian and thus does not reproduce the grids 
shown in Fig. 1. This seems to substantiate the point that the negative Jacobian as 
can be seen from Fig. 1 comes from the truncation error of the central difference 
scheme. To examine the performance of the present grid generation technique, 
Coleman’s problem [16] is solved by the algorithm presented in the previous 
section. The resulting grid system is shown in Fig. 3. From Fig. 3, one sees that the 
grid system has a smoothly varying grid size over the entire domain with 
orthogonal grids at the four boundaries. No negative Jacobian is found even 
though the cavity in Fig. 3 is deeper than that in Fig. 1. 

Large control functions occur also in an adaptive grid system due to the need of 
clustering grids at some particular locations. In testing the performance of their 
adaptive method, Matsuno and Dwyer [15] employed a physical quantity 
simulated by f(x; a) that has a sharp but continuous increase at x = 0.5. The varia- 
tion of the function f(x; a) in a narrow region containing the point x=0.5 is 
specified by the the parameter a. As a assumes the value of infinity, the function 
f(x; co) becomes a unit step function at x = 0.5. For a given value of a, Matsuno 
and Dwyer [15] generated a grid system by using their adaptive method for the 
particular f-function. Both first and second derivatives of the function (i.e., f, and 
fXX) were then evaluated numerically from the exact value of thef-function defined 
at the grid points. The numerical results off, and f,, can be expected to have 
poor accuracies if an improper grid system has been provided by the adaptive 
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FIG. 4. The f,(x; 2000) result based on the first derivative adaptive method [ 151 with K= 550. 

method. In this study, Matsuno and Dwyer found a serious numerical instability in 
generating their adaptive grids when the required control function P is very large 
such that IJ*P( > 2 (i.e., tl= A( = 1). Owing to this, their adaptive method fails for 
a > 500. In the present investigation, Matsuno and Dwyer’s work [lS] is repeated 
by using the weighting function scheme instead of the central difference scheme 
employed by them in generating an adaptive grid system. The results of first and 
second derivatives of the physical quantity f(x; a) for a = 2000 are then obtained 
by a central difference as done by Matsuno and Dwyer. Figures 4 and 5 show, 
respectively, the resulting values off, and f,,. The exact solution is also plotted in 
Figs. 4 and 5 for comparison. Unlike the central difference scheme, the weighting 
function scheme was seen to pose no numerical difficulty for any a value. It always 
performed Matsuno and Dwyer’s adaptive method “faithfully” even though the 
parameter a has such a large value (a = 2000). 

Figure 6 reveals an S-type grid system generated by the present numerical tech- 
nique for a simply-connected region. Again, the grid size can be seen to vary 
smoothly in the entire domain with orthogonal grids at the four boundaries. 
Figure 7 is an example for an O-type grids. The inner and outer surfaces of the ring 
are specified, respectively, by q = 0 and q = qmax. Making a branch cut in the 
horizontal position and then applying the present numerical technique, one obtains 
the grid network as shown in Fig. 7. It can be observed from Fig. 7 that the grid 
size has been controlled on the inner and outer boundaries through the use of a set 
of control functions P and Q. The horizontal line indicated by arrows is the branch 
cut. It is noteworthy that the equal-q curves possess continuous slope across the 
branch cut due to the orthogonal grids on both sides of the branch cut. This feature 
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FIG. 5. Thef,,(x; 2000) result based on the first derivative adaptive method [lS] with K= 550. 

is very important when the Navier-Stokes equations and the energy equation are 
applied at the branch cut. Note also that the grids in Fig. 6 is identical to a quarter 
of the ring shown in Fig 7. This means that the same grid in Fig. 7 can be produced 
from the result in Fig. 6 by employing the method of images. Therefore, the present 
grid generation technique has a potential to generate a grid system for a complex 
region by patching small pieces of patches together. 

Good grid system is essential to the numerical solution in computing a flow field 
in an arbitrarily shaped region. For a turbine cascade, the C-type grids would be 

FIG. 6. S-type grid system for a simply-connected region 
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FIG. 7. O-type grid system for a ring 

the best grid system to achieve an accurate result in a region near the stagnation 
point. Figure 8 is the resulting C-type grid system obtained by using the present 
numerical technique for a turbine cascade. To impose an incident flow, a vertical 
surface is employed at the upstream boundary. The C-type grid system shown in 
Fig. 8 has a smoothly varying grid size over the entire physical domain. Small 
orthogonal grids are seen to exist around the surface of the turbine blade. The grids 
are also orthogonal to the outer boundary such that the slope of the c-curve is con- 
tinuous across the interface to the next period of the cascade. Unlike the GRAPE 
code of Steger and Sorenson [9,10], the present numerical technique allows an 
arbitrarily small aspect ratio (pitch to blade length) as mentioned earlier. 

As a fmal discussion, it is mentioned that another branch of elliptic system has 
been developed for grid generation (see [18] for example). In this branch, the 
physical coordinates (x, y) is regarded as the temperatures governed by a variable 
thermal conductivity in the computational domain (5, q), i.e., 

(24) 
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FIG. 8. C-type grid system for a turbine cascade. 

where the thermal conductivity is f(& r]) and fP ‘(r, q), respectively, in the t- and 
q-directions. For convenience, this branch of grid generation method will be 
referred to as the variable conductivity formulation (VCF). A grid system generated 
by Eqs. (24) can be proved to be orthogonal as long as f(<, r]) has the boundary 
value 

(25) 

In the grid generation procedure, the f-value inside the entire computational 
domain is interpolated from the boundary value. Equations (24) then are solved 
and the boundary f-value (25) is renewed. This procedure should be repeated until 
the solution converges within a prescribed tolerance. 



466 HSU AND LEE 

The VCF branch seems quite straightforward in generating orthogonal grids. 
However, some disadvantages arise in the use of Eqs. (24) and (25). To examine the 
characteristics of the VCF branch, Eqs. (24) are rewritten in the conventional form 
(Eqs. (2) and (3)) with the coefficients 

ci =f, B=O, )l=f--’ 

J2P= ft, J2Q = -f -'f,,. (26) 

In the conventional formulations (4), CI and y are used to represent the grid size and 
aspect ratio, while p denotes the grid distortion. This manner would provide good 
fundamental grids for most irregularly-shaped regions. The control functions P and 
Q (acting like a fluid flow) then are employed to modify the size and skewness of 
the fundamental grid. Thanks to this characteristic, a simple uniform grid system 
(say, dr = LIP = 1) can be employed in the computational domain, This would 
greatly simplify the computations. The VCF branch, in contrast, has only one single 
variable f(& q) for the grid size and aspect ratio control as observable from 
Eqs. (26). Hence, a nonuniform grid on the computational domain (<, n) is 
generally needed. In addition, the f-value must be positive and the grid is restricted 
to be orthogonal. Under such a situation, the grid sizes A( and A? and the inter- 
polation of f (5, n) could have significant influences on the resulting grids as 
reported by Theodoropoulos et al. [ 181. Another difficulty that could occur in 
the use of the VCF branch is that uncontrollable grids might propagate from a 
nonorthogonal corner or a nonsmooth boundary point where the boundary value 
of f(& n) is undefined. In the present method, such a numerical difficulty can be 
properly eliminated because nonorthogonal grids are allowed in the interior region. 

CONCLUSION 

A numerical technique has been proposed in the present investigation for grid 
generation by the use of Poisson equations. The values of the control functions at 
the two boundaries v] = 0 and q = nmax are determined such that orthogonal grids 
with desired grid size can be specified there. The distribution of the control func- 
tions inside the computational domain then is interpolated with power-law func- 
tions instead of the conventional exponential functions. Thanks to such a strategy, 
the grids on n =0 and q = nmaX can be properly controlled. In the use of the 
GRAPE code, orthogonal grids are not guaranteed at the boundaries r = 0 and 
5=5,,,. To remedy this disadvantage, a particular treatment is proposed in the 
present study to yield orthogonal grids at the two boundaries 5 = 0 and < = Zj,,, . 
This characteristic is important in patching grids together without slope discon- 
tinuity across the interface of the patches. It also allows the Poisson equations to 
generate coordinates for O-type grids and periodic turbine cascade. For a region 
having boundaries of large curvature or when clustering grids are required at some 
particular locations, the control functions could have very large magnitudes. To 
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guarantee a good numerical stability in spite of the values of the control functions, 
the weighting function scheme along with the SIS solver is used for the solution of 
the elliptic grid generation equations. Through the examples illustrated in this 
study, the present numerical technique is seen to have excellent performances in 
generating S-type, O-type, and C-type grids. 

APPENDIX A 

Let the second-order elliptic differential equation 

AB,, + Bf9, + CO, + DB, = 0 (Al) 

be defined in the domain Q and let the small region Sz, (0 d x da and 0 < y 6 b) 
be a subdomain of Sz. The size of Q, is assumed sufficiently small such that inside 
the small region QM, the coefficients A, B, C, and D can be approximated by 
constant values. Based on such an approximation, the algebraic equation 

0(x, y)=co+cle~(C’A)“+cZe-‘Dis)y 

+ c3e-(C’A)X - (D/B) y (A21 

is seen to satisfy the governing equation (Al) inside the subdomain 0,. For 
convenience, the four coefficients cO, ci, c2, and cj are determined by employing 
the four corner values of 8, i.e., 

hv = WJ 01, b, = fw, a) 
e,, = tqa, b), e,, = fqo, 6). (A3) 

After a rearrangement, Eq. (A2) becomes 

where { } and { }’ stand for, respectively, a row vector and a column vector. The 
sape functions (or interpolation functions) are defined by 

Ns& Y) = L,(x) L(Y), NE&, Y) = Ux) L,(Y) 
NT-&, Y) = J%(X) MY), N,w(xv Y) = L(x) b(y) 

L,(x) = (emCxlA _ epCaIA)/( 1 -e-WA) 

L,(x) = (1 - e-Cx’A)/( 1 - e-=“IA) 

L,(y) = (epDyIB _ eeDblB)/( 1 - epDbIE) 

L2(Y)=(1-e-Dy’B)/(1-e-Db’B). 

(As) 
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w P E _I AXi- Axi 

AYj-1 

FIG. Al. Location of the point P. 

Equations (A4) and (A5) constitute an interpolation for the solution of Eq. (Al) 
based on the 0 values at the four corners of Q,. For the limiting case C = D = 0, 
the L-functions in Eqs. (A5) will reduce to the first-order Lagrange polynomials 
that has been widely used in finite element methods. In the present investigation, 
the value of the cross derivative 8, at a particular point P inside the subdomain 
Q, is desired. As shown in Fig. Al, the location of point P is denoted with 
(Axi-,, d y,- , ), while the values of a and b are, respectively, a = dxi- i + dx, and 
b = A yip I + Ay,. Upon differentiating Eq. (A4) with respect to x and y followed by 
letting x = Axip i and y = Ayj- 1, one obtains the value of 8, for the pont P as 

0, = vsw + e,, - eNW - es,) w, 
W= (CD//jB)(e”l.~-l -e-“‘.t)-’ (e=2+l me-=X,)-‘, 

Z,,i= (C/A) AXi, and Z,,j = (D/B) AYj. 

(A6) 

For the case of uniform grid (Ax;- I = Axi = Ax and Ayj- L = Ayj = Ay), Eqs. (A6) 
reduce to 

exv = (es, + ONE - eNW - w @%G) w~*(Z~)/(AX AY) 

w?(Z) = Z/(e” - eFZ), 
(A7) 

where Z1 = (C/A) Ax and Z, = (D/B) Ay. 
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